If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = w2 + -6w + 27 Reorder the terms: 0 = 27 + -6w + w2 Solving 0 = 27 + -6w + w2 Solving for variable 'w'. Combine like terms: 0 + -27 = -27 -27 + 6w + -1w2 = 27 + -6w + w2 + -27 + 6w + -1w2 Reorder the terms: -27 + 6w + -1w2 = 27 + -27 + -6w + 6w + w2 + -1w2 Combine like terms: 27 + -27 = 0 -27 + 6w + -1w2 = 0 + -6w + 6w + w2 + -1w2 -27 + 6w + -1w2 = -6w + 6w + w2 + -1w2 Combine like terms: -6w + 6w = 0 -27 + 6w + -1w2 = 0 + w2 + -1w2 -27 + 6w + -1w2 = w2 + -1w2 Combine like terms: w2 + -1w2 = 0 -27 + 6w + -1w2 = 0 Begin completing the square. Divide all terms by -1 the coefficient of the squared term: Divide each side by '-1'. 27 + -6w + w2 = 0 Move the constant term to the right: Add '-27' to each side of the equation. 27 + -6w + -27 + w2 = 0 + -27 Reorder the terms: 27 + -27 + -6w + w2 = 0 + -27 Combine like terms: 27 + -27 = 0 0 + -6w + w2 = 0 + -27 -6w + w2 = 0 + -27 Combine like terms: 0 + -27 = -27 -6w + w2 = -27 The w term is -6w. Take half its coefficient (-3). Square it (9) and add it to both sides. Add '9' to each side of the equation. -6w + 9 + w2 = -27 + 9 Reorder the terms: 9 + -6w + w2 = -27 + 9 Combine like terms: -27 + 9 = -18 9 + -6w + w2 = -18 Factor a perfect square on the left side: (w + -3)(w + -3) = -18 Can't calculate square root of the right side. The solution to this equation could not be determined.
| X-.4x=102 | | 3x+14+45+2x+9y=180 | | -120=5(7z+4) | | 3z-8z=4z-2-6z | | A^2-81/100= | | -44+6n=-5+45n | | 8w-32=6(w-3) | | -50=2(3e-7) | | log^4x=log^4(8-x) | | 3x+14+45=180 | | 1/5n=-( | | 6x-7=6(x-9) | | -4a+11=-a+2 | | (5x+8)+(5x+8)=6x+56 | | 8(x+9)-3x=5(x-8)+2 | | 14=-5w+3(w+4) | | 14w^2+33w-15= | | 6x+67=3x+14 | | 5n^2=-8+41n | | x^3-10*x-100=0 | | a+56=-11(1+6a) | | k-43=-50 | | 4y+3+7y-18=90 | | -4(4y-6)+3(3y+6)= | | 2r+11=5-2(3r+3) | | -2(2x-5)= | | 5024=4*3.14r^2 | | 5x^5+19x^4-14x^3-118x^2-96x+24=0 | | 4(x+2)-6=2+4x | | (10x+7)(3x-8)=0 | | -64a^2+9= | | 10x-xb-ax=ab-24 |